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Abstract—Over the last years, there has been an increasing
research interest in the application of accelerometry data
for many kinds of automated gait analysis algorithms. The
need for more security on mobile devices is increasing with
new functionalities and features made available. To improve
the device security we propose an improved biometric gait
recognition approach with a stable cycle detection mechanism
and comparison algorithm. Unlike previous work on wearable
gait recognition, which was based from simple average cycling
methods to more complicated methods, this paper reports
new techniques for which can improve the performance, by
using simple approaches. Preprocessing, cycle detection and
recognition-analysis were applied to the acceleration signal. The
performance of the system was evaluated having 60 volunteers
and 12 sessions each volunteer and resulted in an equal error
rate (EER) of 5.7%.

I. INTRODUCTION

Mobility is in the future and the future is currently in the
present. Today’s personal devices, whether we are dealing
with mobile phones, PDAs, iPads, etc. are being held or
put into the pocket of the user. What we don’t have time
to do on computers or laptops, we do on these devices and
this makes the everyday much easier. They are not only
used for mere communication such as calling or sending
text messages; these devices are also used in applications
such as m-banking, m-commerce and e-mails which result
in financial and private information being stored on the
device. Thus the data on the device represents by far the
more valuable asset than the pure hardware [1]. Therefore,
the security risks related to ever-present mobile devices
are becoming critical since a mobile device ending up in
the wrong hands presents a serious threat to information
security and user privacy. Most common, the protection on
portable devices against unauthorized usage is based on a
PIN, which is not always effective considering security and
memorability aspects [2]. An additional difficulty with PIN-
authentication is that it requires explicit action from the user
who has to enter it before using the phone. In consequence
many users deactivate the PIN-authentication.

This unattractive situation can be improved by exploiting
the intrinsic sensors of a mobile device and applying an
unobtrusive method for user authentication, which does not
require explicit attention nor action of the user. Biometric

gait recognition based on accelerometer data such an authen-
tication method and will be further explained and analyzed
in this paper.

Today, mobile devices implements other biometric equip-
ments such as fingerprint sensors [3] to improve the security.
And by using biometric characteristics instead of passwords,
PINs, tokens etc., makes authentication more efficient since
these characteristics are not to be stolen or forgotten. In
addition, biometric authentication establishes an explicit
link to the subject’s identity because biometrics use hu-
man physiological and behavioral characteristics. Usually,
most biometric characteristics require an explicit (obtrusive)
user action for authentication, e.g. swiping the finger on a
fingerprint sensor. However, the proposed method here in
this paper does not require an obtrusive action. Instead, we
introduce an unobtrusive gait recognition mechanism, where
data is continuously recorded while the subject is walking.

Previous studies from different aspects, psychology [4],
medicine [5] and biometrics [6] [7] [8], already give proof
for that human gait contains very distinctive patterns that
can be used for identification and verification purposes.

All of the published studies on gait recognition using
acceleration data were mainly based on dedicated sensor and
in the same time slightly aware of fulfilling these issues at
the very same time:

1) Automated gait recognition
2) Stable cycle detection mechanism
3) A rich and fast comparison algorithm (distance metric)

In [7], we see several different, but very simple cycle
detection mechanisms that are not fully automated. This
means a lot of fixed parameters are used for the dataset.
However, [9] introduces an extended version of [7], making
the cycle detection more automated, but a lot of complicated
methods were performed. In contrast to these, we describe a
new possible method to gain improved results using simple
cycle detection with a simpler distance metric. The particular
type of device which was used in our research was the
MR100 sensor [10].

The rest of the paper is structured as follows: Section II
gives an overview over different existing gait recognition
techniques. Section III describes the collection of gait data.
In section IV the methods applied for feature extraction are
described and the results are given in section VI. Section



Figure 1. Background segmentation for extracting the silhouette picture
(subtraction).

VII concludes the paper and, finally, section VIII describes
future work.

II. GAIT RECOGNITION

There are three different approaches in gait recognition:
Machine Vision Based, Floor Sensor Based and Wearable
Sensor Based Gait Recognition. These will be explained in
the next paragraphs.

Machine Vision Based (MV): In the machine vision
approaches, the system will typically consist of several
digital or analog cameras with suitable optics for acquiring
the gait data. Techniques such as thresholding to convert
images into black and white; pixel counting to count the
number of light or dark pixels; or background segmentation
are used to extract features to identify a person. Figure 1
shows an example of the MV-based approach with processed
background segmentation.

Earlier gait recognition studies have shown promising
results. Sarkar et al. [11] did an experiment with 1870
gait datasets from 122 subjects and reported an recognition
rate of 78% in an identification scenario. This was further
improved to a rate of 90% by other research [12] [13].
Most of the current gait recognition approaches are MV-
based. The main advantage for this type of recognition
compared to other biometric systems is that persons are
captured unobtrusively from a distance. Even though MV-
based gait analysis is not that precise as other biometrics,
e.g. fingerprints, it is still useful for surveillance scenarios.

Floor Sensor based (FS): In the floor sensor approach
the sensors are placed on a mat along the floor which makes
these methods suitable for controlling access to buildings.
When people walk across the mat, the force to the ground is
measured, this is also known as the GRF (Ground Reaction
Force). In a research from the University of Southampton
[14], such a floor sensor for gait recognition was prototyped
and is illustrated in Figure 2.

Their experiment had 15 subjects and three different fea-
tures were extracted, namely the stride length (the distance
traveled by the heel of one foot to the next time the same
foot strikes down), stride cadence (the rhythm of a person’s
walk) and TOH ratio (the time on toe to the time on heel
ratio). Using the TOH ratio an recognition rate of 80% could
be achieved [15]. Different studies with small number of test
persons (10 - 15) exist which report recognition rates up to

Figure 2. Gait collection by floor sensors. a) shows footsteps recognized,
b) shows the time spent at each location in a), c) shows footstep profiles for
heel and toe strikes, and finally d) is a picture of a prototype floor sensor
carpet.

98.2%. Jenkins and Ellis [16] had 62 test persons and only
reported a recognition rate of 39%.

Wearable Sensor based (WS): The wearable sensor
recognition methodology is the newest gait recognition
among the other mentioned earlier and that it provides an
unobtrusive authentication method for mobile devices. This
is based on wearing motion recording sensors on the body
of the person in different places; on the waist, pockets, shoes
and so forth.
The most common wearable sensors which are built-in into
mobile devices are listed below:

• Accelerometer Sensor: Measures the acceleration .
• Gyro Sensor: Measures the rotation and number of

degrees per second of rotation.
• Force Sensor: Measure the force when walking

Table I overviews the latest WS-based gait recognition
research from years 2004 to 2010. The last column, #TP,
represents the number of test-persons.

Study Sensor Location EER #TP
Gafurov et al. [7] trousers pocket 7.3 % 50
Gafurov et al [7]. hip 13 % 100
Gafurov et al. [7] arm 10 % 30

Gafurov et al. [17] ankle 1.6 % 30
Holien [9] hip 5.9 % 60

Ailisto et al.[18] waist 6.4 % 36
Mäntyjärvi et al. [19] waist 7.0 % , 19.0 % 36

Rong et al. [20] waist 6.7 % 35
Rong et al. [21] waist 5.6, 21.1 % 21

Vildjiounaite et al. [22] hand 17.2, 14.3 % 31
Vildjiounaite et al. [22] hip pocket 14.1, 16.8 % 31
Vildjiounaite et al. [22] breast pocket 14.8, 13.7 % 31

Table I
PERFORMANCE OF CURRENT WEARABLE SENSOR-BASED GAIT

RECOGNITION SYSTEMS.



III. DATA COLLECTION

The experiment was carried out on a solid surface. The
60 subjects who participated wore an accelerometer attached
to a belt. The accelerometer was placed on the left leg, by
the hip. By attaching the accelerometer to a belt it ensured
that the accelerometer more or less had the same orientation
for all subjects. The subjects made the experiment over two
days and were asked to walk as normal as possible in all
12 sessions, and to walk in a fixed length (20 meters).
The subject walked the distance, and then stopped for three
seconds, turn and wait, and then walk the same distance
back. The accelerometer used was a Motion Recording 100
(MR100) sensor, with a sampling frequency of 100 samples
per second and its dynamic range was between -6g and +6g
(g = 9.8 m/s2) for each of the three directions x,y and z.

IV. FEATURE EXTRACTION

The raw data retrieved from the MR100 sensor needs to
be processed in order to create robust templates for each
subject. The program for the gait data analysis has been
developed in C#.

Preprocessing: The preprocessing is based on work from
[7]. At first we apply linear time interpolation on the three
axis data (x,y,z) retrieved from the sensor to obtain a obser-
vation every 1

100 second since the time intervals between two
observation points are not always equal. Another weakness
from the sensor is the fact that the acceleration data will
be outputted with some noise. This noise is removed by
using a weighted moving average. Thereafter, the data values
are converted to g-forces by using properties of the sensor.
And finally we calculate the resultant vector or the so-called
magnitude vector by applying the following formula,

rt =
√
x2t + y2t + z2t , t = 1, ..., N

where rt, xt, yt and zt are the magnitudes of resulting, verti-
cal, horizontal and lateral acceleration at time t, respectively
and N is the number of recorded oberservations in the signal.

Cycle Detection: From the data it is known that one cycle-
length varies between 80 − 140 samples depending on the
speed of the person. Therefore we need to get an estimation
of how long one cycle is for each subject. This is done
by extracting a small subset of the data and then compare
the subset with other subsets of similar length. Based on
the distance scores between the subsets, the average cycle
length is computed, as can be seen in Figure 3.

The cycle detection starts from a minimum point, Pstart,
around the center of the walk. From this point, cycles are
detected in both directions. By adding the average length, de-
noted γ to Pstart, the estimated ending point E = Pstart+γ
is retrieved (in opposite direction: E = Pstart − γ ). The
cycle end is defined to be the minimum in the interval
Neighbour Search from the estimated end point. This is
illustrated in Figure 4. This process is repeated from the

Figure 3. The yellow baseline area indicate the subset with 70 samples
that are extracted, the green area is the search area where the baseline
is compared against a subset of the search area. The 4 black subgraphs
are the baseline at those points it has the lowest distance with the search
area subsets, and the difference between them (blue area) indicate the
cyclelength

Figure 4. Cycle detection showing how each cycle (i.e the steps) in the
resultant vector is automatically detected.

new end point, until all cycles are detected. The end point
in the Neighbour Search is found by starting from point E.
From this point we begin searching 10% of the estimated
cycle length, both before and after E for the lowest point.
Now three things can happen

1) The lowest point was found in the first 1
3 of the search

area, in this case we might have skipped too many samples
and will therefore search γ

10∗2 more samples backwards. If
a new lowest point was found we will continue to search
additional samples backwards until no new lowest point is
found, see Figure 5(a).

2) The lowest point was found in the last 1
3 of the search

area, in this case we might have skipped too few samples



and will therefore search γ
10∗2 more samples forwards. Like

with the previous step, if a new lowest point was found we
will continue to search forward until no new lowest point is
found, see 5(b).

3) The lowest point was found in the middle 1
3 of the

search area, in this case we assume to have found the correct
minimum point, see Figure 5. When the minimum point

Figure 5. The Neighbour Search is illustrated for the three options that can
happen when we are searching for steps, (a) we have jumped too far and
since the lowest point in the search area (blue circle) is in the first third we
search additional samples back and find the correct minimum point (green).
(b) same as with the backward search only that we search forward this time
since we have jumped too short. (c) we have jumped satisfactory and the
correct minimum is in the middle third of our search area.

is found we store it into an array and we begin searching
for the next minimum point by adding the length of one
estimated cycle. When forward searching is complete we
repeat this phase by searching backwards so all steps in the
data are identified. We will therefore end up with having an
array containing each steps start/end index. These points will
therefore be used for the extraction of cycles, as illustrated
in Figure 6.

Figure 6. The cycles have been extracted by taking each steps starting
and ending point. Both these points are minimum points from the resultant-
vector data set.

Template Creation: Before we create the feature vector
template, we ensure to skip cycles that are very different
from the others. This is done by taking each cycle and

calculate its distance to every other cycle by using dynamic
time warping (DTW),

dtwi,j = dtw(cyclei, cyclej)

where i = 1..N and j = 1..N, which means that we will get
a symmetric N × N matrix. From this point, we calculate
all the averages of one specific cycle to all others.

di =
1

n− 1

∑
j 6=i

dtwi,j

Thereafter we calculate the average of the calculated aver-
ages,

µ =
1

n

∑
i

di

which therefore will be the total average. Now we will have
the opportunity to see how much deviation one cycle differs
from another. Thus, the standard deviation, µ, is calculated
and to put a realistic border we will accept cycles that are
within 2σ of difference from the total average

di = [µ− 2σ;µ+ 2σ]

The 2σ is used to process trial and error. If a lower limit
was chosen, we might had ended up skipping too many
cycles, while a higher limit would lead to not skipping cycles
we want to skip.

When all odd cycles are removed, we want to create the
feature vector. In previous work, researchers used an average
cycle as a feature vector. That was computed by combining
all cycles (which were normalized) into one average median
cycle [7]. In this paper we propose a method where all of
the extracted cycles are stored as a template for one subject,
denoted CS = {CS1 , ..., CSN} where each cycle i = 1..N is
normalized to a length of k observations; in our case k =
100. Eight to fifteen cycles were stored per session.

V. FEATURE VECTOR COMPARISON

A new distance metric, named the cyclic rotation metric
(CRM), is proposed. This metric cross-compares two sets
of cycles with a cyclic-rotation mechanism to find the best
matching pair:

Cross Comparison: is used to find the most optimal and
best distance score when cross-comparing two set of cycles,
denoted CS = {CS1 , ..., CSN} and CT = {CT1 , ..., CTM}. This
simply mean that each cycle in set CS is compared to every
cycle in set CT . The comparison distances are calculated
by the cyclic rotation metric (CRM). From the total number
of N × M similarity distance scores gained, the minimum
distance score is selected,

dmin = min{CRM(CSi , C
T
j )}

where i=1..N and j=1..M. The pair of cycles with the most
minimum similarity score is considered the best matching



pair. Thus, this best (i.e. minimum) similarity score, dmin,
is used as the similarity score between set CS and CT .

Cyclic Rotation Metric (CRM): is a metric that compares
a reference cycle and an input cycle with each other. The
reference cycle, i.e. CSi , which is compared against the
input cycle, i.e. CTj , is stepwise cyclical rotated. After each
rotation the new distance is calculated using the manhattan
distance. This is repeated until the input template has done
a full rotation, then the lowest dissimilarity is kept:

d(CSi , C
T
j ) = minw=1..k{Manh(CSi , C

T
j(w))}

, where k = 100. When having the two cycles with lowest
manhattan distance, we then finally apply dynamic time
warping on these cycles which then will be the final distance
score

CRM(CSi , C
T
j ) = DTW (d(CSi , C

T
j ))

The reason why we calculate the manhattan distance when
rotating and thereafter applying DTW when the minimal
manhattan distance is found, is due to the fact that manhattan
runs fast and linear, O(n) while DTW is O(n2). And
furthermore the cyclic rotation is done to minimize the
problem when local extremes among the cycles we create
for each input are located at different locations.

VI. RESULTS

Having 12 sessions for each person; that would give
12·(12−1)·60

2 = 3960 genuine attempts and 720·(720−12)
2 =

254880 impostor attempts. With these high numbers com-
pared to trials presented in the papers from Table I we gain
an increased performance with an EER = 5.7 %, see Figure
7.

Figure 7. DET-curve: Perfomance of Gait Recognition with an EER of 5.7
%. The x-axis indicates the false acceptance rate (FAR) and y-axis indicitas
the false rejection rate (FRR).

From Table II, we display the performances for three
cycle detection methods. The performance of our method is
slightly more improved than Holien’s and more than twice
as good as Gafurov’s.

Ours Gafurov [7] Holien [9]
Euclidean 8.2 % 13% 8.4 %
DTW - 11.75% 5.9 %
CRM 5.7 % - -

Table II
COMPARISON OF VARIOUS METHODS - EQUAL ERROR RATES (EER)

ARE PRESENTED

Furthermore, Table III shows a more detailed overview
that compares Gafurov et al. and Vildjiounaite et al. [22]
who applied different approaches. However, there are still
several similarities with our experiment and Gafurov et
al.’s experiment such as the use of same sensor and that
the experiment was carried out in the exact same location.
Holien uses the same settings as we do; therefore, it is not
described in the table.

Ours Gafurov Vildjiounaite
Sensor MR100 MR100 ADXL202JQ
Sensor Placement Left hip Right Hip Hip Pocket
Participants 60 100 31
Sessions 12 4 2
Algorithm Cross Average Cycle Step Method
Ditance Metric CRM Euclidean Correlation
EER 5.7 % 13% 14.1 %

Table III
A TABLE SHOWING THE MAIN DIFFERENCES BETWEEN OUR

EXPERIMENT AND OTHERS.

VII. CONCLUSION

This paper looks at interesting aspects of the biometric
feature gait. A new, simple and rich gait recognition ap-
proach has been proposed. The proposed feature extraction
method is adapted and applied to data from 60 volunteers.
We can clearly say that we have achieved improved result
with an EER of 5.7%, especially when we look at the
number of participants and the genuine/imposter attempts.
Even though that we had fewer participants than some of
the other databases described in Table I, we did have more
recordings per participant, almost up to twice the number
of gait sequences. Our achieved EER is at first, much lower
than the EERs for accelerometer based gait recognition that
was placed on the hip as seen in Table I and in section
VI. Secondly, our algorithm is more rich and stable, mean-
ing that we have developed and automated cycle-detection
(Neighbour Search algorithm), and finally the comparison
that finds the best and most optimal distance score from
two feature vectors with the use of cross comparison and
Cyclic Rotation Metric (CRM) as a distance metric.

VIII. FUTURE WORK

To make biometric gait recognition a technology suitable
for practical use, using embedded accelerometers, further
research on feature extraction and comparison is required.



However the achieved result is promising and the pro-
posed approach contains potential for enhancement. Differ-
ent walking conditions like walking speed or ground might
have an influence of the walk of a person and therefore
might also influence the biometric recognition. Therefore,
accelerometer data of the subjects will be recorded at several
settings like different walking speeds and different grounds
(carpet, grass, gravel). In addition, data will be collected
using phones at different positions (front and back trouser
pocket and pocket attached to belt) for further analysis.

In addition to improving the recognition rates for normal
walk on different setting, we will in future work include
analysis of the different settings mentioned before to create
a gait recognition method which provides robust verification
under different circumstances and especially begin analyzing
acceleration data from a mobile phone.
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