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Abstract—The need for more security on mobile devices is
increasing with new functionalities and features made available.
To improve the device security we propose gait recognition as
a protection mechanism. Unlike previous work on gait recogni-
tion, which was based on the use of video sources, floor sensors
or dedicated high-grade accelerometers, this paper reports the
performance when the data is collected with a commercially
available mobile device containing low-grade accelerometers.
To be more specific, the used mobile device is the Google
G1 phone containing the AK8976A embedded accelerometer
sensor [1]. The mobile device was placed at the hip on each
volunteer to collect gait data. Preproccesing, cycle detection and
recognition-analysis were applied to the acceleration signal. The
performance of the system was evaluated having 51 volunteers
and resulted in an equal error rate (EER) of 20%.
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I. INTRODUCTION

Mobile devices – mobile phones, PDAs etc. – can be
found in almost everyone’s pocket and are considered as
an essential tool in human-being’s everyday life. They are
not only used for mere communication such as calling or
sending text messages; however, these devices are also used
in applications such as internetting, receiving and sending
emails and storing (sensitive) documents. As a result of this,
not only phone numbers and addresses are stored in the
mobile device but also financial information and business
details which definitely should be kept private. Thus the
value of the data on the phone is often higher than the pure
costs of the phone itself and therefore this data should be
protected. Most mobile phones do only offer authentication
methods where the user has to remember a number (PIN)
which he explicitly has to enter. This is not very user
friendly, so many users decide to demand this authentication
only once when the phone is switched on. A survey [2]
shows that 66% of the respondents use PIN-authentication
only at switch on and only 18% of the user also utilize
the standby mode authentication. As a consequence, when
a phone is lost or stolen, in most cases, all data on the
phone is directly available to the new holder. This situation
can be improved by offering an unobtrusive authentication
method to users of mobile phones. As this authentication is
no extra-work for the user but happens unnoticed to him, it

is likely that more people would demand an authentication
after a standby period. Biometric gait recognition based
on accelerometer data is such an unobtrusive authentication
method. When the owner of the phone is walking, the phone
will recognize him based on his gait, so he can directly use
the phone without any further authentication. When he is not
walking, an alternative, active authentication method (e.g.
PIN) can be used. In this paper, biometric gait recognition
based on accelerometer data collected using the intrinsic
sensors of the mobile device will be further explained and
analyzed.

Different biometric characteristics such as fingerprints [3]
already have been proposed to improve security of mobile
devices. Biometric characteristics have the advantage that,
unlike passwords, PINs, tokens etc., they cannot be stolen
or forgotten. The main advantage of biometric authentication
is that it establishes an explicit link to the subject’s identity
because biometrics use human physiological and behavioral
characteristics. Most of these characteristics require an ex-
plicit user action when used for authentication, e.g. putting
the finger on a fingerprint scanner. In contrast to this, our
proposed method is unobtrusive because the relevant data is
continuously recorded while the person is walking. These
days many mobile devices already contain accelerometers
that can be used to record the way a person walks.

Early studies from psychology [4], medicine [5] and
biometrics [6], [7] already give evidence that human gait
contains very distinctive patterns that can be used for iden-
tification and verification purposes.

All of the published studies on gait recognition using
acceleration data use dedicated devices for data collection
containing high-grade accelerometers. In contrast to this, we
will describe in this paper the results on gait recognition
when using data collected from a commonly available com-
mercial mobile phone containing low-grade accelerometers.
The particular type of mobile phone used in our research is
the Google G1 phone [1].

The rest of the paper is structured as follows: Section II
gives an overview over different existing gait recognition
techniques. Section III gives a description of the accelerom-
eter embedded in the phone and in section IV the used



definitions are given. Section V describes the collection of
gait data. In section VI the methods applied for feature
extraction are described and the results are given in section
VII. Section VIII gives conclusions and in the last section
(IX) the future work is outlined.

II. GAIT RECOGNITION

The term gait recognition describes a biometric method
which allows an automatic verification of the identity of
a person by the way he walks. There are three different
approaches in biometric gait recognition: Machine Vision
Based, Floor Sensor Based and Wearable Sensor Based Gait
Recognition.

In the machine vision approaches [8], [9], [10], [11], the
system will typically consist of several digital or analog
cameras with suitable optics for acquiring the gait data.
Techniques such as background segmentation are used to
extract features to identify a person. This technique is
especially useful for surveillance scenarios.

In the floor sensor approach [12], [13], the sensors are
placed on the floor which makes these methods suitable for
controlling access to buildings. When people walk across
the mat, they can be authenticated e.g. by the force to the
ground which is measured by the mat.

The newest of the three approaches is based on wearing
motion recording sensors on the body in different places: on
the waist, in pockets, shoes and so forth. As our proposed
method belongs to this group, it is explained in more detail
here.

The wearable sensors (WS) can be accelerometers (mea-
suring acceleration), gyro sensors (measuring rotation and
number of degrees per second of rotation), force sensors
(measuring the force when walking) etc. Table I gives an
overview of current WS-based gait recognition studies from
years 2004 to 2008. The last column, #TP, represents the
number of test-persons.

All studies except Morris and Huang et al. were using
only accelerometers for collecting the gait data and reported
recognition rates based on the verification scenario. Morris
and Huang et al. used other types of sensors including force
sensors, bend sensors, gyro sensors etc. in addition to the
accelerometer sensor.

The main advantage of gait recognition using accelerome-
ters is that it provides an unobtrusive authentication method
for mobile devices which already contain accelerometers
(like mobile phones, PDAs etc.). Therefore, it can be applied
for continuous verification of the identity of the user without
his intervention. This is a great advantage to other biometric
systems like fingerprint or face recognition which are also
suitable for implementation on mobile phones but require ac-
tive user intervention. This advantage of accelerometer based
gait recognition compensates the so far worse recognition
rates. For example, the equal error rate (EER) of fingerprint

recognition [21] or 2-dimensional face recognition [22],
compared to gait recognition, achieve lower EERs.

As biometric gait recognition only works when the user
is walking, this method has to be combined with another
authentication method. In [23] Vildjiounaite et al. propose a
cascaded fusion of gait, voice and fingerprint. The active
authentication via fingerprint is only required when the
two unobtrusive authentication methods fail. This happens
in 10 − 60% of the cases and indicates that adding an
unobtrusive authentication method to mobile phones does
decrease the neccessatity of regular active authentication and
hence increases the user friendlyness.

III. ACCELEROMETER

The G1 has an integrated sensor (AK8976A) for measur-
ing acceleration in three axes [1]. This sensor is a piezore-
sistive MEMS (Micro-Electro-Mechanical-System) accele-
rometer which uses piezoresistors to measure the acceler-
ations. Piezoresistors have the property that they change
their resistance on tension and compression. The sensor
consists of a cantilever beam which deflects from its neutral
position under acceleration. This deflection is measured
using piezoresistors. See Figure 1 for a schematic diagram
of this principle [24]. Acceleration in all directions can be
measured by combining three sensors perpendicular to each
other such that they span the three-dimensional space.

Figure 1. Schematic diagram of a piezoresistive accelerometer.

IV. DEFINITIONS

In the following we give the definitions used in this
paper: A go starts when the recording of the data has been
started and ends when recording has been terminated. In
other words, everything stored in one file on the phone is
one go, including attachment and detachment of the phone
and the standing - turning around - standing at the end
of the corridor. See section V for more details about data
collection. Figure 2 shows the plot of one go. One can see
that two walks can be extracted from one go. One walk
contains only data when the person is walking. It begins
when the person starts walking and ends when he/she stops



Study Sensor Location EER Recognition #TP
Holien [14] left leg (hip) 5.9 %, 25.8 % - 60

Gafurov et al. [6] ankle 5 % - 30
Gafurov et al. [6] trousers pocket 7.3 % - 50
Gafurov et al [6]. hip 13 % - 100
Gafurov et al. [6] arm 10 % - 30

Morris [15] shoe - 97.4 % 10
Huang et al. [16] shoe - 96.93 % 9
Ailisto et al.[17] waist 6.4 % - 36

Mäntyjärvi et al. [7] waist 7.0 % , 19.0 % - 36
Rong et al. [18] waist 6.7 % - 35
Rong et al. [19] waist 5.6, 21.1 % - 21

Vildjiounaite et al. [20] hand 17.2, 14.3 % - 31
Vildjiounaite et al. [20] hip pocket 14.1, 16.8 % - 31
Vildjiounaite et al. [20] breast pocket 14.8, 13.7 % - 31

Table I
PERFORMANCE OF CURRENT WEARABLE SENSOR-BASED GAIT RECOGNITION SYSTEMS. MODIFIED FROM [6].

Figure 2. Sample data collected with the G1. The acceleration in x-, y-
and z-direction collected during one go is shown, including attaching the
phone etc. The dotted lines show the walking part of one go.

at the other end of the corridor. One walk contains several
steps of one subject. There is a periodic repetition every two
steps which is called one cycle [6].

V. DATA COLLECTION

The data used in this article is collected using a standard
G1 mobile phone which does contain accelerometers as
described in section III. The G1 uses the android platform
and a software was written for this platform to access the
accelerometer and output the data from the sensor to a file
(40-50 samples per second for each of the three directions
x, y and z). While recording the gait data the phone has
been placed in a pocket attached to the belt of the subject
on the right-hand side of the hip. The phone is positioned
horizontal, the screen points to the body, the upper part of
the phone points in walking direction (see figure 3).

The walking distance was about 37 meters down the hall
on flat carpet (see figure 4). At the end of the hall the

Figure 3. Phone attached to subject and the three axes in which
acceleration is measured.

subjects had to wait 2 seconds, turn around, wait again and
then walk back the same distance.

Figure 4. Photograph of the walking setting.

The subjects were told to walk as normal as possible,
which means that different subjects can walk at different
speeds.

In total 51 volunteers participated in the data collection
(see table II for age and gender distribution). Each of them
did two sessions at two different days wearing their normal
shoes. From the data collected at each go, two walks could
be extracted. One, when the subject was walking down the



< 20 20− 24 25− 30 > 30 unknown
male 1 2 26 10 2

female 0 5 4 0 1
total 1 7 30 10 3

Table II
AGE AND GENDER DISTRIBUTION OF VOLUNTEERS.

hall and the other one when he was walking back. So in
total there are four walks for each subject.

The first walk was used to compute the reference template.
The other three walks were used to compute the probe
feature vectors, which were used for comparison.

VI. FEATURE EXTRACTION

The raw data retrieved from the mobile phone needs to
be processed in order to create robust templates for each
subject. The program for data analysis has been developed in
Java and is based on the work of [14]. Of the three different
signals retrieved from the phone only the acceleration in x-
direction is used as it showed to give the best results. From
this raw data the repeating cycles are extracted to result in
one single average cycle for each person. A brief description
of the steps conducted for feature extraction is given in the
following:

• Time Interpolation: Due to the android SDK, the phone
only outputs data values whenever there is a change
in the sensor. Therefore, the time intervals between
two sample points (acceleration values) are not always
equal, which requires time interpolation. This ensures
that the time-interval between two sample-points will
be fixed.

• Filtering: Removal of noise is done by applying a
weighted moving average (WMA) filter.

• Average Cycle length: From the data it is known that the
cycle length is between 40 − 60 samples. To compute
the average cycle length a small subset from the center
of the data is extracted and compared with other subsets
of similar length. Based on the distance scores between
these subsets, the average cycle length is computed.

• Cycle Detection: The cycle detection starts from a
minimum point Pstart = Pmin around the center of the
walk. From this point, cycles are detected in both di-
rections. By adding the average length to Pstart, the es-
timated ending point Pend = Pstart + averageLength
is retrieved (in opposite direction: Pend = Pstart −
averageLength ). The cycle end is defined to be the
minimum in the interval of +/- 10% (of the average
cycle length) from the estimated end point, see figure
5. This process will be repeated from the new end point
until all cycles are detected.

• Average Cycle: Before the average cycle is computed,
irregular cycles are omitted. This is done by using
Dynamic Time Warping (DTW) [25] to calculate the

Figure 5. Cycle Detection

distances between all cycles and deleting the ones
which have an unusual large distance to the other cy-
cles. The cycle with the lowest average DTW-distance
to the remaining cycles will be used as the average
cycle. This average cycle, which is a vector (of real
values) of an average length around 45 samples, will
be used as the feature vector for this walk.

VII. RESULTS

The quality of the feature vector extracted as described
in section VI was analyzed. The distance metric used to
compare two feature vectors was Dynamic Time Warping,
which was chosen because the feature vectors by nature can
have different lengths. By using DTW we avoid normalizing
the feature vectors to a fixed length. The performance is
measured in terms of False Match Rate (FMR) versus False
Non-Match Rate (FNMR) and the results are graphically
displayed using a DET (Detection Error Trade-off) curve in
figure 6.

Figure 6. DET-curve: Performance of Gait Recognition with an EER of
20.1 %.



Comparing the achieved equal error rate of 20.1% to the
error rate for the same analysis settings stated in Holien’s
work (12.9%) [14], one can see an increase of approximately
50%. An issue that needs to be taken into consideration is
that the test data used in this paper was collected using
a mobile phone which contains a lower sampling rate
accelerometer. Its sample rate was around 40− 50 samples
per second whereas the high quality dedicated accelerometer
used in Holien had around 100 samples per second.

VIII. CONCLUSION

The main contribution of this paper was to demonstrate
that one has the ability to use commercial mobile phones
equipped with accelerometers to carry out biometric gait
recognition. As stated before, the advantage of this method
to other biometric systems which could be implemented on
mobile phones, is the unobtrusive operation which gives a
high user friendliness.

To the best of our knowledge, for the first time, data
collected by accelerometers in a standard mobile phone was
used for biometric gait recognition. A feature extraction
method was adapted and applied to the data from 51 volun-
teers collected in two sessions. The achieved EER of 20.1%
is approximately 50% higher than the EER achieved with a
similar method using a dedicated accelerometer with a twice
as high sampling rate. To make biometric gait recognition
using embedded accelerometers a technology suitable for
practical use, further research on feature extraction and
comparison is required. However the achieved results are
promising and the proposed approach contains potential for
enhancement.

IX. FUTURE WORK

The obtained equal error rate of 20.1% indicates that
biometric gait recognition can be run on mobile phones but
it is not yet ready for practical use. Focus of our future work
will be enhancing the cycle extraction technique to get more
reliable feature vectors.

In addition to improving the recognition rates for normal
walk on flat ground, future work will include analysis of
different settings to create a gait recognition method which
provides robust verification under different circumstances.
These circumstances might be different walking conditions
like walking speed or ground which will have an influence of
the walk of a person and therefore might also influence the
biometric recognition. Therefore, accelerometer data of the
subjects will be recorded at several settings like different
walking speeds and different grounds (e.g. carpet, grass,
gravel).

In addition, data will be collected using phones at dif-
ferent positions (e.g. front and back trousers pocket and
pocket attached to belt) for further analysis. To handle the
movements of the phone when carried in a trousers pocket,

values recorded by the magnetic field sensor can be used to
normalize the orientation of the phone.

The attack resistance of biometric gait recognition should
also be analyzed. Studies by Gafurov [6] and Mjaaland [26]
show that it is difficult for an attacker to imitate another
person. This needs to be confirmed for the special scenario
of mobile phones.
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